

past Papers Standard Grade Credit Chemistry 2001

ZUUU1
Marking Scheme

2001 Standard Grade Chemistry Credit Marking Scheme											
Question	Answer	Chemistry Covered									
1a	Е	zinc is higher up reactivity series than iron so protects it sacrificially									
1b	Α	iron is higher u	iron is higher up reactivity series than tin so protects it sacrificially								
2a	A+F Both for 1 mark	Fair Test: Factors Affecting Reaction Rate Question Particle size is changing so temp and concentration and type of acid must be the same									
2α	A+F Both for 1 mark	Experiments		Same		Same		Same		Different	
		A+F		peratur (20°C)		centro (1 mol/l		Me (Magne		Particle : (powder or r	
2b	В	Copper is below hydrogen in the electrochemical series. Copper does not react with dilute acids : experiment B has no reaction.									
	C+E	Answer		Α	В		С	D	Е	F	
3α		Particle		²⁴ Na	14 ₆ C	19 9	=	$^{24}_{12}Mg^{2+}$	¹⁹ ₉ F-	12 6 C	
	Both for 1 mark	no. of neut	rons	13	8	-	10	12	10	6	
		Isotopes: same number of protons but different number of neutrons							_		
		Answer		Ä	В		С	D	E	F	
3b	B+F	Particle	:	²⁴ Na	14 ₆ C	19 9	3	$^{24}_{12}\text{Mg}^{2+}$	¹⁹ F -	12 6	
	Both for 1 mark	no. of prot	ons	11	6		9	12	9	6	
		no. of neuti	rons	13	8	1	10	12	10	6	
		Answer	1	Α	В		С	D	Е	F	
_	D+E	Particle	:	²⁴ Na	14 ₆ C	19 9	=	²⁴ Mg ²⁺	¹⁹ F -	12 ₆ C	
3c	Both for 1 mark	Electron Arrang of Elemen	r	2,8,1	2,4	2	.,7	2,8,2	2,7	2,4	
		Electron Arrang of Ion	ement					2,8	2,8		
		glucose									
4 a	D	_	H ₁₂ O	(no a	•	2C₂H			2 <i>C</i> O ₂		
41	С	starch + water ──► glucose									
4 b		$(C_6H_{12}O_5)_n + nH_2O \longrightarrow nC_6H_{12}O_6$									
		glucose + oxygen									
4c	E		206			,		6CO ₂		H ₂ O	
	4.5	Bases neutralise acids.									
5α	A+D Both for 1 mark	Bases include metal hydroxides (alkalis), metal oxides and metal carbonates									
		Salts made by pred			-						
5b	F		Α	В		С		D	Е	F	
35		,		de potassium nitrate		sodium chloride			sodium phospho		
		Solubility sol		1		1		soluble	soluble	insolul	ole
6	A, C 1 mark each		Partic Prote		Location in nucleu		Charg +1		lass amu		
				eutron in nucle					amu		
		Electron			outside nucleus -1			approx. zero			
7	B, D 1 mark each	■A Glucose C ₈ H ₁₂ O ₆ is covalent so glucose solution does not conduct.									
		☑B Metals conduct in both solid and liquid states so bulb lights as circuit is complete									
		$\boxtimes C$ Hexane C_6H_{14} is covalent so hexane does not conduct									
		☑D both ionic substances which conduct in either liquid or solution states. ☑E Potassium nitrate KNO₃ is ionic so does not conduct in the solid state.									
<u> </u>	<u> </u>		. 410 1	., 103 13 10	,,,,c 50 U	JUJ 110	. 2011		<u> </u>	<u></u>	

8	A, B 1 mark each	 ☑A Cu²⁺ ions are blue and NO₃⁻ ions are colourless ∴ Cu(NO₃)₂ is blue ☑B all the coloured ions in the table contain transition metals ☑C The permanganate ion contains oxygen but is purple ☑D Zinc is a transition metal but has no colour ☑E Lithium compounds are only colourless if paired with a colourless negative ion
9	A, C 1 mark each	☑A Both compounds (ammonia and carbon dioxide) have the highest critical temperatures ☑B There is no pattern to relative formula mass and critical temperature ☑C Both diatomic elements (H₂ and O₂) have higher critical temperatures than monatomic He ☑D Carbon dioxide is only able to be a liquid at temperatures below 31°C

Question	Answer	Chemistry Covered				
10a	no effect	C_5H_{12} is pentane. Alkanes do not decolourise bromine solution				
		C_6H_{12} can be hexene or cyclohexane. As bromine solution is not decolourised it				
10b cyclohexane		cannot have C=C double bonds ∴ B is cyclohexane				
10c	• • • • • • • •	Isomers have the same formula but have different structures:				
	isomers	 C is a cycloalkane with five carbons e.g. cyclopentane D is an alkene with 5 carbons e.g. pent-1-ene, pent-2-ene, etc. 				
11a		very reactive metal + water \longrightarrow salt + hydrogen				
	hydrogen	potassium, sodium, lithium and calcium all react with water this way.				
	W: Pt, Au, Ag or Hg	W must be the least reactive metals if heating alone releases the metal from the ore.				
11b	Y: K, Na, Li, Ca or Mg	Y must be the most reactive metals if they react with cold water.				
	7 11, 11a, 21, 0a of 111g	Y is most reactive as it is the only one which reacts with water				
11c	Y, X, Z, W	W is the least reactive as it is the only metal which releases it metal when heated				
44.1		X is more reactive than Z as X displaces X from a solution of X				
11d	Reduction	Reduction is gain of electrons e.g. $M^{2+} + 2e^{-} \longrightarrow M$				
12a	CH ₄ + 2O ₂					
	↓	$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$				
	CO ₂ + 2H ₂ O					
12b	SO₂ produced	Compounds containing sulphur burn to form SO ₂				
	forming acid rain	SO ₂ dissolves in water to form acid rain				
		1mol $H_2S = (2x1) + (1x32) = 2 + 32 = 34g$ mass 34a				
		$\mathbf{no. of mol} = \frac{\mathbf{mass}}{\mathbf{gfm}} = \frac{34g}{34g \text{ mol}^{-1}} = 1\text{mol}$				
	48g	$2H_2S + SO_2 \longrightarrow 2H_2O + 3S$				
12c		2mol 3mol				
		1mol 1.5mol				
		1mol S = 32g				
		m ass = n o. of mol × gfm = 1.5mol × 32g mol ⁻¹ = 48g				
12d(i)	line graph	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
12d(ii)	higher the temperature the lower the solubility	problem solving question				
13a(i)	ammonium phosphate	Data booklet p8 gives names of NH4 ⁺ and PO4 ³⁻ ions				
	to replace the	Fertilisers are soluble salts containing potassium, nitrogen				
13a(ii)	nutrients in soil and	and/or phosphorus				
	help plant growth					
13b	nitric acid	Acid Hydrochloric Sulphuric Nitric Salt Name ending chloride sulphate nitrate				
13c(i)	does not melt	thermosetting: does not melt on heating				
100(1)	on heating	thermoplastic: does melt on heating				
40	44 704	gfm $CO(NH_2)_2 = (1\times12) + (1\times16) + (2\times14) + (4\times1) = 12 + 16 + 28 + 4 = 60g$				
13c(i)	46.7%	$%N = \frac{\text{mass of N}}{\text{gfm}} \times 100 = \frac{28}{60} \times 100 = 46.67\%$				
	litely and a continuation	gfm 60				
14a	higher mass of ions in Dead Sea than Ocean	Problem Solving Question				
14b	One answer from:	sodium chloride/bromide/sulphate potassium chloride/bromide/sulphate calcium chloride/bromide/sulphate				
14c	0.04	1mol Ca = 40g				
		no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{0.4g}{40g \text{ mol}^{-1}} = 0.01 \text{mol}$				
	0.01mol l ⁻¹	•				
		concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.01 \text{mol}}{1 \text{ litre}} = 0.01 \text{mol/l}$				
<u> </u>	l	111111111111111111111111111111111111111				

15a	Arrow from B (RIGHT) to	Electrons travel through wires (not solution)						
	A (LEFT) through wires	From Question: Reaction in beaker B produces electrons						
15b(i)	Oxidation	Oxidation is loss of electrons (electrons right of arrow)						
15b(ii)	pH decreases	H ⁺ ions (acid) produced as reaction proceeds						
15c	$Br_2 + 2e^- \rightarrow 2Br^-$	Equation on page 10 of data booklet						
16a	Iron	Nitrogen + Hydrogen iron → Ammonia						
16b	Ammonium salt + metal hydroxide	Any Ammonium salt will react with strong alkali solids like (NaOH, KOH) to form Ammonia NH3 gas						
16c	Answer to include:	2 electrons form a shared pair between atoms. Atoms must be set distance apart for electrons to form a stable pair instead of remaining as two unpaired electrons						
17a	a family of compounds with similar chemical properties and a general formula	Homologous Series Alkane Alkene Cycloalkane Alcohol Carboxylic Acids General Formula CnH2n+2 CnH2n CnH2n CnH2n+1OH CnH2n+1COOH						
17b(i)	hydrogen H₂	ElementCarbonHydrogenBromineOxygenSodiumReactant Side618222Product Side616222						
17b(ii)	Answer showing:	H H H H H H H H H H H H H H						
18a	precipitation	Magnesium hydroxide is insoluble:						
18b	Ca ²⁺ (OH ⁻) ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
18c	carbon dioxide or carbon monoxide	$MgO + C + Cl_2 \longrightarrow MgCl_2 + \frac{CO}{CO_2}$						
18d	ions free to move when molten	Solid ionic compounds do not conduct as their ions are not free to move. Melting or dissolving free up the ions and they are able to move during electrolysis.						
19a	CnH2n-2	Alkanes have general formula of C_nH_{2n+2} . The $C=C$ double bond in Alkenes changes general formula to C_nH_{2n} . A triple bond reduces the number of hydrogens again down to C_nH_{2n-2} .						
19b(i)	Diagram showing:	H - C - C = C - C - C - H + H + H + H + H + H + H + H + H + H						
19b(ii)	Bromine atoms must be on adjacent carbons	The bromines must be an carbons next to each other if a triple bond is to be formed						

